
EUINCOOP 2012 
(C)RG@SERC,IISc 

Challenges & Opportunities 
in Heterogeneous      
Multi-Core  Era 

R. Govindarajan 
Supercomputer Centre 

Indian Institute of Science 
Bangalore, India  

govind@serc.iisc.ernet.in 



© RG@SERC,IISc 2 

Overview 

• Introduction 
• Programming Challenges 
• Exploiting Data, Thread  and Task Level 

Parallelisms 
– StreamIT on CPU and GPU cores 
– MATLAB on CPU and GPU cores 

• Other Challenges and Opportunities 
• Conclusions  
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Moore’s Law : Performance 

Processor performance 
 doubles every 1.5 years 
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Progress in Processor Architecture 

• More transistors ⇒ New architecture 
innovations 
– Multiple Instruction Issue processors 

• VLIW  
• Superscalar 
• EPIC  

– More on-chip caches, multiple levels of cache 
hierarchy, speculative execution, … 

Era of Instruction Level Parallelism   
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Multicores : The Right Turn 
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Progress in Processor Architecture 

• More transistors ⇒ New architecture innovations 
– Multiple Instruction Issue processors 
– More on-chip caches 
– Multi cores 
– Heterogeneous cores and accelerators  
 Graphics Processing Units (GPUs) 
 Cell BE  
 Many Integrated Cores (MIC) 
 Reconfigurable accelerators …  
  Era of Heterogeneous Accelerators    
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Accelerators 



© RG@SERC,IISc 8 

Accelerators: Hype or Reality? 

Some Top500 Systems (Nov. 2011 List) 

Rank System Description # Procs.  R_max 
(TFLOPS) 

2 Tianhe Xeon + Nvidia 
C2050 GPUs 

186368 2,566 

4 Nebulae-
Dawning 

Intel X5650, Nvidia 
C2050 GPU 

55,680 + 
64,960 

1,271 

5 Tsubame  Xeon + Nvidia GPU  73278 1,192 

10 Roadrunner Opteron + CellBE 6480 
+12960 

1,105 
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Accelerator – Fermi S2050 
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Handling the Multi-Core 
Challenge 

• Shared and Distributed Memory Programming 
Languages 
– OpenMP 
– MPI 

• Other Parallel  Languages (partitioned global 
address space languages) 
– X10, UPC, Chapel, …  

• Emergence of Programming Languages for GPU 
– CUDA 
– OpenCL 
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GPU Programming: Good News 

• Emergence of Programming Languages for GPU 
– CUDA 
– OpenCL – Open Standards 

• Growing collection of code base  
– CUDAzone 
– Packages supporting GPUs by ISV 

• Impressive performance  
– Yes! 

• What  about Programmer Productivity? 
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GPU Programming:            
Boon or Bane  

• Challenges in GPU programming  
– Managing parallelism across SMs and SPMD cores 
– Transfer of data between CPU and GPU 
– Managing CPU-GPU memory bandwidth efficiently 
– Efficient use of different level of memory (GPU 

memory, Shared Memory, Constant and Texture 
Memory, … 

– Efficient buffer layout scheme to ensure all accesses 
to GPU memory are coalesced.  

– Identifying appropriate execution configuration for 
efficient execution 

– Synchronization across multiple SMs 
 

 
© RG@SERC,IISc 12 



© RG@SERC,IISc 13 

What Parallelism(s) to Exploit? 
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Synergistic Execution on  
Multiple Hetergeneous Cores 
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Stream Programming Model 

• Higher level programming model where nodes 
represent computation and channels communication 
(producer/consumer relation) between them. 

• Exposes Pipelined parallelism and Task-level 
parallelism 

• Synchronous Data Flow (SDF), Stream Flow Graph, 
StreamIT, Brook, …  

• Compiling techniques for achieving rate-optimal, 
buffer-optimal, software-pipelined schedules  

• Mapping applications to Accelerators such as GPUs 
and Cell BE. 
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StreamIT Example Program 
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Bandpass Filter 
+ 
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Bandpass Filter 
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Amplifier 

2 – Band Equalizer 
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Stream Graph Execution 

Stream Graph Software Pipelined Execution  
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• Multithreading 
– Identify good execution configuration to exploit the 

right amount of data parallelism  
• Memory 

– Efficient buffer layout scheme to ensure all 
accesses to GPU memory are coalesced.  

• Task Partition between GPU and CPU cores  
• Work scheduling and processor (SM) 

assignment problem. 
– Takes into account communication bandwidth 

restrictions  

Our Approach  
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Compiler Framework 
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Compiling MATLAB to 
Heterogeneous Machines 

• MATLAB is an array language extensively used for 
scientific computation 

• Expresses data parallelism  
– Well suited for acceleration on GPUs 

• Current solutions (Jacket, GPUmat) require user 
annotation to identify “GPU friendly” regions 

• Our compiler, MEGHA (MATLAB Execution on 
GPU-based Heterogeneous Architectures), is fully 
automatic  
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Compiler Overview 

• Frontend constructs an SSA 
intermediate representation 
(IR) from the input MATLAB 
code 

• Type inference is performed 
on the SSA IR 
– Needed because MATLAB is 

dynamically typed 
• Backend identifies “GPU 

friendly” kernels, decides 
where to run them and 
inserts reqd. data transfers 

Code Simplification 

Type Inference 

SSA Construction 

Frontend 

Kernel Identification 

Mapping and 
Scheduling 

Data Transfer 
Insertion 

Code Generation 
Backend 
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Backend : Kernel 
Identification 

• Kernel identification identifies sets of IR 
statements (kernels) on which mapping and 
scheduling decisions are made 

• Modeled as a graph clustering problem 
• Takes into account several costs and benefits 

while forming kernels 
– Register utilization (Cost) 
– Memory utilization (Cost) 
– Intermediate array elimination (Benefit) 
– Kernel invocation overhead reduction (Benefit) 
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Backend : Scheduling and 
Transfer Insertion 
• Assignment and scheduling is performed 

using a heuristic algorithm 
– Assigns kernels to the processor which 

minimizes its completion time 
– Uses a variant of list scheduling 

• Data transfers for dependencies within a 
basic block are inserted during scheduling 

• Transfers for inter basic block 
dependencies are inserted using a 
combination of data flow analysis and 
edge splitting 
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• Geometric mean speed up of 12X on 8800 
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Benchmark 

CPU+ GPU
CPU only
Jacket
GPUmat

113 64 

• Geometric mean speed up of 12X on 8800 
and 29.2X on the Tesla 

• Significant speedups going from CPU 
only to CPU+GPU 

• Performs better than GPUmat and Jacket 
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Other Challenges & Opportunities 

• Other accelerators 
– OMAP, MIC,  FPGAs, … 

• Need Programming model/languages for 
exploiting various types of parallelisms,   still 
obtaining high level of  Performance, Productivity 
and Portability 

• Being able to efficiently map applications onto 
given platform.  
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Other Challenges & Opportunities 

• In the context of embedded systems, the issues 
get even more complicated 
– Power, small form factor, multiple concurrent 

applications, response time, …  
• Domain Specific Languages and Platforms  
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Thank You !! 
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