
EUINCOOP 2012
(C)RG@SERC,IISc

Challenges & Opportunities
in Heterogeneous
Multi-Core Era

R. Govindarajan
Supercomputer Centre

Indian Institute of Science
Bangalore, India

govind@serc.iisc.ernet.in

© RG@SERC,IISc 2

Overview

• Introduction
• Programming Challenges
• Exploiting Data, Thread and Task Level

Parallelisms
– StreamIT on CPU and GPU cores
– MATLAB on CPU and GPU cores

• Other Challenges and Opportunities
• Conclusions

© RG@SERC,IISc 3

Moore’s Law : Performance

Processor performance
 doubles every 1.5 years

© RG@SERC,IISc 4

Progress in Processor Architecture

• More transistors ⇒ New architecture
innovations
– Multiple Instruction Issue processors

• VLIW
• Superscalar
• EPIC

– More on-chip caches, multiple levels of cache
hierarchy, speculative execution, …

Era of Instruction Level Parallelism

© RG@SERC,IISc 5

Multicores : The Right Turn
6

G
H

z

1
C

or
e

3
G

H
z

1

C
or

e
1

G
H

z

1
C

or
e

Pe
rf

or
m

an
ce

3 GHz
16 Core

3 GHz
4 Core

3 GHz
2 Core

© RG@SERC,IISc 6

Progress in Processor Architecture

• More transistors ⇒ New architecture innovations
– Multiple Instruction Issue processors
– More on-chip caches
– Multi cores
– Heterogeneous cores and accelerators
 Graphics Processing Units (GPUs)
 Cell BE
 Many Integrated Cores (MIC)
 Reconfigurable accelerators …
 Era of Heterogeneous Accelerators

© RG@SERC,IISc 7

Accelerators

© RG@SERC,IISc 8

Accelerators: Hype or Reality?

Some Top500 Systems (Nov. 2011 List)

Rank System Description # Procs. R_max
(TFLOPS)

2 Tianhe Xeon + Nvidia
C2050 GPUs

186368 2,566

4 Nebulae-
Dawning

Intel X5650, Nvidia
C2050 GPU

55,680 +
64,960

1,271

5 Tsubame Xeon + Nvidia GPU 73278 1,192

10 Roadrunner Opteron + CellBE 6480
+12960

1,105

© RG@SERC,IISc 9

Accelerator – Fermi S2050

© RG@SERC,IISc 10

Handling the Multi-Core
Challenge

• Shared and Distributed Memory Programming
Languages
– OpenMP
– MPI

• Other Parallel Languages (partitioned global
address space languages)
– X10, UPC, Chapel, …

• Emergence of Programming Languages for GPU
– CUDA
– OpenCL

© RG@SERC,IISc 10

© RG@SERC,IISc 11

GPU Programming: Good News

• Emergence of Programming Languages for GPU
– CUDA
– OpenCL – Open Standards

• Growing collection of code base
– CUDAzone
– Packages supporting GPUs by ISV

• Impressive performance
– Yes!

• What about Programmer Productivity?

© RG@SERC,IISc 11

© RG@SERC,IISc 12

GPU Programming:
Boon or Bane

• Challenges in GPU programming
– Managing parallelism across SMs and SPMD cores
– Transfer of data between CPU and GPU
– Managing CPU-GPU memory bandwidth efficiently
– Efficient use of different level of memory (GPU

memory, Shared Memory, Constant and Texture
Memory, …

– Efficient buffer layout scheme to ensure all accesses
to GPU memory are coalesced.

– Identifying appropriate execution configuration for
efficient execution

– Synchronization across multiple SMs

© RG@SERC,IISc 12

© RG@SERC,IISc 13

What Parallelism(s) to Exploit?

© RG@SERC,IISc 14

Synergistic Execution on
Multiple Hetergeneous Cores

Our Apprach

Compiler/
Runtime System

CellBE

Other
Accel. Multicores

GPUs SSE

Streaming
Lang.

MPI OpenMP

CUDA/
OpenCL

Parallel
Lang.

Array Lang.
 (Matlab)

© RG@SERC,IISc 15 © RG@SERC,IISc 15

Stream Programming Model

• Higher level programming model where nodes
represent computation and channels communication
(producer/consumer relation) between them.

• Exposes Pipelined parallelism and Task-level
parallelism

• Synchronous Data Flow (SDF), Stream Flow Graph,
StreamIT, Brook, …

• Compiling techniques for achieving rate-optimal,
buffer-optimal, software-pipelined schedules

• Mapping applications to Accelerators such as GPUs
and Cell BE.

© RG@SERC,IISc 16 © RG@SERC,IISc 16

StreamIT Example Program

Dup. Splitter

Bandpass Filter
+

Amplifier

Combiner

Signal Source

Bandpass Filter
+

Amplifier

2 – Band Equalizer

© RG@SERC,IISc 17 © RG@SERC,IISc 17

Stream Graph Execution

Stream Graph Software Pipelined Execution

A

C

D

B

SM1 SM2 SM3 SM4

A1 A2

A3 A4

B1 B2

B3 B4 D1

C1

D2

C2

D3

C3

D4

C4

0
1
2
3
4
5
6
7

Pipeline
Parallelism

Task
Parallelism

Data
Parallelism

© RG@SERC,IISc 18 © RG@SERC,IISc 18

• Multithreading
– Identify good execution configuration to exploit the

right amount of data parallelism
• Memory

– Efficient buffer layout scheme to ensure all
accesses to GPU memory are coalesced.

• Task Partition between GPU and CPU cores
• Work scheduling and processor (SM)

assignment problem.
– Takes into account communication bandwidth

restrictions

Our Approach

© RG@SERC,IISc 19 © RG@SERC,IISc 19

Compiler Framework

Execute Profile
Runs

Generate Code
for Profiling

Configuration
Selection

StreamIt
Program

Task
Partitioning

Task
Partitioning

ILP Partitioner

Heuristic Partitioner

Instance
Partitioning

Instance
Partitioning

Modulo
Scheduling

Code
Generation

CUDA
Code

+
C Code

© RG@SERC,IISc 20 © RG@SERC,IISc 20

0
2
4
6
8

10
12
14
16
18
20

Mostly GPU
Syn-Heur
Syn-ILP

Experimental Results on Tesla

>
52

x

>
32

x

>
65

x

© RG@SERC,IISc 21

Compiling MATLAB to
Heterogeneous Machines

• MATLAB is an array language extensively used for
scientific computation

• Expresses data parallelism
– Well suited for acceleration on GPUs

• Current solutions (Jacket, GPUmat) require user
annotation to identify “GPU friendly” regions

• Our compiler, MEGHA (MATLAB Execution on
GPU-based Heterogeneous Architectures), is fully
automatic

© RG@SERC,IISc 22

Compiler Overview

• Frontend constructs an SSA
intermediate representation
(IR) from the input MATLAB
code

• Type inference is performed
on the SSA IR
– Needed because MATLAB is

dynamically typed
• Backend identifies “GPU

friendly” kernels, decides
where to run them and
inserts reqd. data transfers

Code Simplification

Type Inference

SSA Construction

Frontend

Kernel Identification

Mapping and
Scheduling

Data Transfer
Insertion

Code Generation
Backend

© RG@SERC,IISc 23

Backend : Kernel
Identification

• Kernel identification identifies sets of IR
statements (kernels) on which mapping and
scheduling decisions are made

• Modeled as a graph clustering problem
• Takes into account several costs and benefits

while forming kernels
– Register utilization (Cost)
– Memory utilization (Cost)
– Intermediate array elimination (Benefit)
– Kernel invocation overhead reduction (Benefit)

© RG@SERC,IISc 24

Backend : Scheduling and
Transfer Insertion
• Assignment and scheduling is performed

using a heuristic algorithm
– Assigns kernels to the processor which

minimizes its completion time
– Uses a variant of list scheduling

• Data transfers for dependencies within a
basic block are inserted during scheduling

• Transfers for inter basic block
dependencies are inserted using a
combination of data flow analysis and
edge splitting

Results : Data Parallel Programs

0

2

4

6

8

10

12

14

16

18

20

bscholes clos fdtd nb1d nb3d MatrixMul filter

Sp
ee

du
p

O
ve

r
M

AT
LA

B

Benchmark

CPU
8800
Tesla

• Geometric mean speed up of 12X on 8800
and 29.2X on the Tesla

87 115 76 35 250 38

Results : Data Parallel Programs

0

2

4

6

8

10

12

14

16

18

20

bscholes clos fdtd nb1d nb3d

Sp
ee

du
p

O
ve

r M
AT

LA
B

Benchmark

CPU+ GPU
CPU only
Jacket
GPUmat

113 64

• Geometric mean speed up of 12X on 8800
and 29.2X on the Tesla

• Significant speedups going from CPU
only to CPU+GPU

• Performs better than GPUmat and Jacket

© RG@SERC,IISc 27

Other Challenges & Opportunities

• Other accelerators
– OMAP, MIC, FPGAs, …

• Need Programming model/languages for
exploiting various types of parallelisms, still
obtaining high level of Performance, Productivity
and Portability

• Being able to efficiently map applications onto
given platform.

© RG@SERC,IISc 28

Other Challenges & Opportunities

• In the context of embedded systems, the issues
get even more complicated
– Power, small form factor, multiple concurrent

applications, response time, …
• Domain Specific Languages and Platforms

EUINCOOP-2012
(C)RG@SERC,IISc

Thank You !!

	Challenges & Opportunities in Heterogeneous Multi-Core Era
	Overview
	Moore’s Law : Performance
	Progress in Processor Architecture
	Multicores : The Right Turn
	Progress in Processor Architecture
	Accelerators
	Accelerators: Hype or Reality?
	Accelerator – Fermi S2050
	Handling the Multi-Core Challenge
	GPU Programming: Good News
	GPU Programming: Boon or Bane
	What Parallelism(s) to Exploit?
	Our Apprach
	Stream Programming Model
	StreamIT Example Program
	Stream Graph Execution
	Our Approach
	Compiler Framework
	Slide Number 20
	Compiling MATLAB to Heterogeneous Machines
	Compiler Overview
	Backend : Kernel Identification
	Backend : Scheduling and Transfer Insertion
	Results : Data Parallel Programs
	Results : Data Parallel Programs
	Other Challenges & Opportunities
	Other Challenges & Opportunities
	Thank You !!

